283 research outputs found

    Nectar distribution and its relation to food quality in honeybee ( Apis mellifera ) colonies

    Get PDF
    Abstract.: In honeybees (Apis mellifera), the process of nectar collection is considered a straightforward example of task partitioning with two subtasks or two intersecting cycles of activity: (1) foraging and (2) storing of nectar, linked via its transfer between foragers and food processors. Many observations suggest, however, that nectar collection and processing in honeybees is a complex process, involving workers of other sub-castes and depending on variables such as resource profitability or the amount of stored honey. It has been observed that food processor bees often distribute food to other hive bees after receiving it from incoming foragers, instead of storing it immediately in honey cells. While there is little information about the sub-caste affiliation and the behaviour of these second-order receivers, this stage may be important for the rapid distribution of nutrients and related information. To investigate the identity of these second-order receivers, we quantified behaviours following nectar transfer and compared these behaviours with the behaviour of average worker hive-bees. Furthermore, we tested whether food quality (sugar concentration) affects the behaviour of the second-order receivers. Of all identified second-order receivers, 59.3% performed nurse duties, 18.5% performed food-processor duties and 22.2% performed forager duties. After food intake, these bees were more active, had more trophallaxes (especially offering contacts) compared to average workers and they were found mainly in the brood area, independent of food quality. Our results show that the liquid food can be distributed rapidly among many bees of the three main worker sub-castes, without being stored in honey cells first. Furthermore, the results suggest that the rapid distribution of food partly depends on the high activity of second-order receiver

    Resonant tunneling through a C60 molecular junction in liquid environment

    Full text link
    We present electronic transport measurements through thiolated C60_{60} molecules in liquid environment. The molecules were placed within a mechanically controllable break junction using a single anchoring group per molecule. When varying the electrode separation of the C60_{60}-modified junctions, we observed a peak in the conductance traces. The shape of the curves is strongly influenced by the environment of the junction as shown by measurements in two distinct solvents. In the framework of a simple resonant tunneling model, we can extract the electronic tunneling rates governing the transport properties of the junctions.Comment: 13 pages, 4 figures. To appear in Nanotechnolog

    Effective interaction between molecules in the BEC regime of a superfluid Fermi gas

    Full text link
    We investigate the effective interaction between Cooper-pair molecules in the st rong-coupling BEC regime of a superfluid Fermi gas with a Feshbach resonance. Our work uses a path integral formulation and a renormalization group (RG) analy sis of fluctuations in a single-channel model. We show that a physical cutoff en ergy ωc\omega_c originating from the finite molecular binding energy is the key to understanding the interaction between molecules in the BEC regime. Our work t hus clarifies recent results by showing that aM=2aFa_{\rm M}=2a_{\rm F} is a {\it ba re} molecular scattering length while aM=(0.60.75)aFa_{\rm M}=(0.6\sim0.75) a_{\rm F} is the low energy molecular scattering length renormalized to include high-energy scat tering up to ωc\omega_c (here aFa_{\rm F} is the scattering length between Fermi atoms). We also include many-body effects at finite temperatures. We find that aMa_{\rm M} is strongly dependent on temperature, vanishing at TcT_{\rm c}, consistent with the earlier Bose gas results of Bijlsma and Stoof.Comment: 10 pages, 3 figure

    Long-term organic matter application reduces cadmium but not zinc concentrations in wheat

    Get PDF
    Wheat is a staple food crop and a major source of both the essential micronutrient zinc (Zn) and the toxic heavy metal cadmium (Cd) for humans. Since Zn and Cd are chemically similar, increasing Zn concentrations in wheat grains (biofortification), while preventing Cd accumulation, is an agronomic challenge. We used two Swiss agricultural long-term field trials, the “Dynamic-Organic-Conventional System Comparison Trial” (DOK) and the “Zurich Organic Fertilization Experiment” (ZOFE), to investigate the impact of long-term organic, mineral and combined fertilizer inputs on total and phytoavailable concentrations of soil Zn and Cd and their accumulation in winter wheat ( L.). “Diffusive gradients in thin films” (DGT) and diethylene-triaminepentaacetic acid (DTPA) extraction were used as proxies for plant available soil metals. Compared to unfertilized controls, long-term organic fertilization with composted manure or green waste compost led to higher soil organic carbon, cation exchange capacity and pH, while DGT-available Zn and Cd concentrations were reduced. The DGT method was a strong predictor of shoot and grain Cd, but not Zn concentrations. Shoot and grain Zn concentrations correlated with DTPA-extractable and total soil Zn concentrations in the ZOFE, but not the DOK trial. Long-term compost fertilization led to lower accumulation of Cd in wheat grains, but did not affect grain Zn. Therefore, Zn/Cd ratios in the grains increased. High Zn and Cd inputs with organic fertilizers and high Cd inputs with phosphate fertilizers led to positive Zn and Cd mass balances when taking into account atmospheric deposition and fertilizer inputs. On the other hand, mineral fertilization led to the depletion of soil Zn due to higher yields and thus higher Zn exports than under organic management. The study supports the use of organic fertilizers for reducing Cd concentrations of wheat grains in the long-term, given that the quality of the fertilizers is guaranteed

    Green manure and long-term fertilization effects on available soil zinc and cadmium and their accumulation by wheat (Triticum aestivum L.)

    Get PDF
    Zinc (Zn) deficiency in humans due to imbalanced diets is a global nutritional problem. It is especially widespread in populations of low-income countries depending on cereals as staple food. Grain Zn concentrations are particularly low in cereals grown on soils with low phytoavailable Zn concentrations. . Plant Zn uptake depends on soil properties such as pH, calcium carbonate, iron and manganese oxides, total Zn and organic matter content (OM). Soil pH, total Zn and OM can be influenced on farms with limited access to mineral fertilizers through organic matter management practises. In this study, we investigated to what extent green manure application could increase soil Zn availability and wheat grain Zn concentrations (biofortification) on soil with different long-term fertilizer management

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    The transition temperature of the dilute interacting Bose gas

    Full text link
    We show that the critical temperature of a uniform dilute Bose gas must increase linearly with the s-wave scattering length describing the repulsion between the particles. Because of infrared divergences, the magnitude of the shift cannot be obtained from perturbation theory, even in the weak coupling regime; rather, it is proportional to the size of the critical region in momentum space. By means of a self-consistent calculation of the quasiparticle spectrum at low momenta at the transition, we find an estimate of the effect in reasonable agreement with numerical simulations.Comment: 4 pages, Revtex, to be published in Physical Review Letter

    Transition temperature of a dilute homogeneous imperfect Bose gas

    Full text link
    The leading-order effect of interactions on a homogeneous Bose gas is theoretically predicted to shift the critical temperature by an amount \Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where a_{scatt} is the scattering length and n is the density. There have been several different theoretical estimates for the numerical coefficient #. We claim to settle the issue by measuring the numerical coefficient in a lattice simulation of O(2) phi^4 field theory in three dimensions---an effective theory which, as observed previously in the literature, can be systematically matched to the dilute Bose gas problem to reproduce non-universal quantities such as the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to improvement of analysis in the longer companion pape
    corecore